ANALISIS BIBLIOMETRI APLIKASI PRAKTIS NANOPARTIKEL TIN(IV) OXIDE (SnO2) MENGGUNAKAN VOSVIEWER INDEXED BY GOOGLE
Abstract
Abstrak - Penelitian ini bertujuan menganalisis bibliometrik dari database Google Scholar yang dilakukan untuk mengidentifikasi perkembangan penelitian terkait aplikasi praktis nanopartikel timah (IV) oksida (SnO2) menggunakan VOSviewer. Data diperoleh melalui pencarian di software Publish or Perish dengan memasukkan kata kunci “application, nanoparticle, SnO2, SnO2 nanoparticle, practical application SnO2†yang mana kata ini disesuaikan dengan kriteria judul, kata kunci, dan abstrak. Artikel yang berkaitan dengan aplikasi praktis nanopartikel SnO2 dikumpulkan 1000 artikel dari tahun 2012 hingga 2022. Dari hasil penelusuran, ditemukan sebanyak 999 artikel yang relevan. Dalam penelitian ini, dapat dilihat bahwa jumlah artikel semakin meningkat tiap tahunnya dan puncaknya pada tahun 2020 ada 134 artikel mengenai topik ini. Kemudian dari hasil penelusuran, dilakukan pemetaan dan didapatkan 236 item. Setiap item yang ditemukan dibagi menjadi 8 cluster. Kebanyakan artikel membahas mengenai pengaplikasian nanopartikel SnO2 dalam sensor gas, elektroda untuk lithium-ion baterai, sel surya berbasis pewarna, dan peningkatan aktivitas fotokatalitik. Tiap tahunnya penelitian terus mengalami pembaharuan dari berbagai campuran bahan yang digunakan untuk mendapatkan efektifitas terbaik. Namun, penelitian mengenai SnO2 dalam aplikasi bidang medis masih jarang dilakukan. Hal ini bisa menjadi referensi bagi peneliti lain untuk melakukan dan memilih topik penelitian terkait yang belum banyak dibahas.
Kata Kunci: Bibliometrik, nanopartikel SnO2, aplikasi praktis, analisis, VOSviewer
Abstract - This study aims to analyze bibliometrics from the Google Scholar database which was carried out to identify research developments related to the practical application of tin (IV) oxide (SnO2) nanoparticles using VOSviewer. The data was obtained through a search in the Publish or Perish software by entering the keywords "application, nanoparticle, SnO2, SnO2 nanoparticle, SnO2 practical application" where these words were adjusted to the criteria of title, keyword, and abstract. 1000 articles related to the practical application of SnO2 nanoparticles were collected from 2012 to 2022. From the search results, 999 relevant articles were found. In this study, it can be seen that the number of articles is increasing every year and peaking in 2020 there are 134 articles on this topic. Then from the search results, mapping was carried out and obtained 236 items. Each item found is divided into 8 clusters. Most articles discuss the application of SnO2 nanoparticles in gas sensors, electrodes for lithium-ion batteries, dye-based solar cells, and enhancement of photocatalytic activity. Every year, research continues to experience renewal of various mixtures of ingredients used to get the best effectiveness. However, research on SnO2 in medical applications is still rarely done. This can be a reference for other researchers to conduct and choose related research topics that have not been widely discussed.
KEYWORDS: Bibliometrics, SnO2 nanoparticles, practical application, analysis, VOSviewer
Full Text:
PDFReferences
Adnan, R., Razana, N. A., Rahman, I. A., & Farrukh, M. A. (2010). Synthesis and Characterization of High Surface Area Tin Oxide Nanoparticles via the Solâ€Gel Method as a Catalyst for the Hydrogenation of Styrene. Journal of the Chinese Chemical Society, 57(2), 222-229.
Ahmed, S., Chaudhry, S. A., & Ikram, S. (2017). A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. Journal of Photochemistry and Photobiology B: Biology, 166, 272-284.
Al Husaeni, D.F., and Nandiyanto, A.B.D. (2022). Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic, ASEAN Journal of Science and Engineering, 2(1), 19-46.
Al Husaeni, D.F., and Nandiyanto, A.B.D. (2022). Bibliometric using Vosviewer with Publish or Perish (using google scholar data): From step-by-step processing for users to the practical examples in the analysis of digital learning articles in pre and post Covid-19 pandemic, ASEAN Journal of Science and Engineering, 2(1), 19-46.
Arici, F., Yildirim, P., Caliklar, Åž., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647.
Aziz, M., Abbas, S. S., & Baharom, W. R. W. (2013). Size-controlled synthesis of SnO2 nanoparticles by sol–gel method. Materials Letters, 91, 31-34.
Bagheri, S., & Julkapli, N. M. (2016). Modified iron oxide nanomaterials: functionalization and application. Journal of Magnetism and Magnetic Materials, 416, 117-133.
Bozeman, B., & Melkers, J. (Eds.). (1993). Evaluating R&D impacts: Methods and practice. Springer Science & Business Media.
Carreño NL, Fajardo HV, Maciel AP, Valentini A, Pontes FM, Probst LF et al (2004) Selective synthesis of vinyl ketone over SnO2 nanoparticle catalysts doped with rare earths. J Mol Catal A Chem 207(2):91–96
Charinpanitkul, T., Faungnawakij, K., & Tanthapanichakoon, W. (2008). Review of recent research on nanoparticle production in Thailand. Advanced powder technology, 19(5), 443-457.
Chen, W., Song, K., Mi, L., Feng, X., Zhang, J., Cui, S., & Liu, C. (2017). Synergistic effect induced ultrafine SnO 2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. Journal of Materials Chemistry A, 5(20), 10027-10038.
Das Purkayastha, M., & Manhar, A. K. (2016). Nanotechnological applications in food packaging, sensors and bioactive delivery systems. Nanoscience in food and agriculture 2, 59-128.
Davazoglou, D. (1997). Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxiding SnCl4. Thin Solid Films, 302(1-2), 204-213.
Deng, Y., Fang, C., & Chen, G. (2016). The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: a review. Journal of Power Sources, 304, 81-101.
Desai, U. V., Xu, C., Wu, J., & Gao, D. (2013). Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. The Journal of Physical Chemistry C, 117(7), 3232-3239.
Devos, P. (2011). Research and bibliometrics: a long history…. Clinics and Research in Hepatology and Gastroenterology, 35(5), 336-337.
Diallo, A., Manikandan, E., Rajendran, V., & Maaza, M. (2016). Physical & enhanced photocatalytic properties of green synthesized SnO2 nanoparticles via Aspalathus linearis. Journal of Alloys and Compounds, 681, 561-570.
Donnally III, C. J., Trapana, E. J., Barnhill, S. W., Bondar, K. J., Rivera, S., Sheu, J. I., & Wang, M. Y. (2019). The most influential publications in odontoid fracture management. World neurosurgery, 123, 41-48.
Du, W., Yang, G., Wong, E., Deskins, N. A., Frenkel, A. I., Su, D., & Teng, X. (2014). Platinum-tin oxide core–shell catalysts for efficient electro-oxidation of ethanol. Journal of the American Chemical Society, 136(31), 10862-10865.
Eck, N. J., and Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070.
Elango, G., & Roopan, S. M. (2016). Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. Journal of Photochemistry and Photobiology B: Biology, 155, 34-38.
Fraigi, L., Lamas, D. G., & De Reca, N. W. (1999). Novel method to prepare nanocrystalline SnO2 powders by a gel-combustion process. Nanostructured materials, 11(3), 311-318.
Garfield, E. (1972). Citation analysis as a tool in journal evaluation: Journals can be ranked by frequency and impact of citations for science policy studies. Science, 178(4060), 471-479.
Ge, J. P., Wang, J., Zhang, H. X., Wang, X., Peng, Q., & Li, Y. D. (2006). High ethanol sensitive SnO2 microspheres. Sensors and Actuators B: Chemical, 113(2), 937-943.
Glotzer, S. C., Nordlander, P., & Fernandez, L. E. (2017). Theory, Simulation, and Computation in Nanoscience and Nanotechnology. ACS nano, 11(7), 6505-6506.
He, J. H., Wu, T. H., Hsin, C. L., Li, K. M., Chen, L. J., Chueh, Y. L., ... & Wang, Z. L. (2006). Beaklike SnO2 nanorods with strong photoluminescent and fieldâ€emission properties. small, 2(1), 116-120.
He, Z. Q., Li, X. H., Xiong, L. Z., Wu, X. M., Xiao, Z. B., & Ma, M. Y. (2005). Wet chemical synthesis of tin oxide-based material for lithium ion battery anodes. Materials Research Bulletin, 40(5), 861-868.
Hu, D., Han, B., Deng, S., Feng, Z., Wang, Y., Popovic, J., ... & Djerdj, I. (2014). Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. The Journal of Physical Chemistry C, 118(18), 9832-9840.
Ke, W., Fang, G., Liu, Q., Xiong, L., Qin, P., Tao, H., ... & Yan, Y. (2015). Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 137(21), 6730-6733.
Ke, W., Zhao, D., Cimaroli, A. J., Grice, C. R., Qin, P., Liu, Q., ... & Fang, G. (2015). Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells. Journal of Materials Chemistry A, 3(47), 24163-24168.
Kim, T. W., Kwak, J. K., Park, K. H., Yun, D. Y., Lee, D. U., Son, D. I., ... & Lee, J. Y. (2010). Microstrucural and optical properties of SnO2 nanoparticles formed by using a solvothermal synthesis method. Journal of the Korean Physical Society, 57(6), 1803-1806.
Kurniawan, F., & Rahmi, R. (2017). Synthesis of SnO2 nanoparticles by high potential electrolysis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(2), 281-286.
Leite, E. R., Gomes, J. W., Oliveira, M. M., Lee, E. J. H., Longo, E., Varela, J. A., ... & Soares, P. C. (2002). Synthesis of SnO2 nanoribbons by a carbothermal reduction process. Journal of nanoscience and nanotechnology, 2(2), 125-128.
Li, L., Zong, F., Cui, X., Ma, H., Wu, X., Zhang, Q., ... & Zhao, J. (2007). Structure and field emission properties of SnO2 nanowires. Materials Letters, 61(19-20), 4152-4155.
Li, Y., Zhu, S., Liu, Q., Gu, J., Guo, Z., Chen, Z., ... & Moon, W. J. (2012). Carbon-coated SnO 2@ C with hierarchically porous structures and graphite layers inside for a high-performance lithium-ion battery. Journal of Materials Chemistry, 22(6), 2766-2773.
Liao, H., Tang, M., Luo, L., Li, C., Chiclana, F., & Zeng, X. J. (2018). A bibliometric analysis and visualization of medical big data research. Sustainability, 10(1), 166.
Malik, A. T., Jain, N., Yu, E., & Khan, S. N. (2018). The top 50 most-cited articles on cervical spondylotic myelopathy. World Neurosurgery, 116, e1168-e1180.
Mao, S., Cui, S., Lu, G., Yu, K., Wen, Z., & Chen, J. (2012). Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. Journal of Materials Chemistry, 22(22), 11009-11013.
Masuda, Y., Ohji, T., & Kato, K. (2010). Highly enhanced surface area of tin oxide nanocrystals. Journal of The American Ceramic Society, 93(8), 2140-2143.
Maulidah, G. S., & Nandiyanto, A. B. D. (2021). A Bibliometric analysis of nanocrystalline cellulose synthesis for packaging application research using VOSviewer. International Journal of Research and Applied Technology (INJURATECH), 1(2), 330-334.
Nandiyanto, A.B.D., Al Husaeni, D.N., and Al Husaeni, D.F. (2021). A bibliometric analysis of chemical engineering research using vosviewer and its correlation with covid-19 pandemic condition. Journal of Engineering Science and Technology, 16(6), 4414-4422.
Naushad, M., Ahamad, T., Sharma, G., Ala’a, H., Albadarin, A. B., Alam, M. M., ... & Ghfar, A. A. (2016). Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion. Chemical Engineering Journal, 300, 306-316.
Nugraha, A. S. (2022). Bibliometric analysis of magnetite nanoparticle production research during 2017-2021 using Vosviewer. Indonesian Journal of Multidiciplinary Research, 2(2), 327-332.
Orduña-Malea, E., & Costas, R. (2021). Link-based approach to study scientific software usage: The case of VOSviewer. Scientometrics, 126(9), 8153-8186.
Parimala, S. S., Gnanamani, A., & Mandal, A. B. (2012). Bulk and surface properties of tin based herbal drug during its preparation: fingerprinting of the active pharmaceutical constituent. Int. J. Pharm. Sci. and Res, 3(4), 1037-1042.
Park, S. K., Yu, S. H., Pinna, N., Woo, S., Jang, B., Chung, Y. H., ... & Piao, Y. (2012). A facile hydrazine-assisted hydrothermal method for the deposition of monodisperse SnO 2 nanoparticles onto graphene for lithium ion batteries. Journal of Materials Chemistry, 22(6), 2520-2525.
Peña, J., Pérez-Pariente, J., & Vallet-RegÃ, M. (2003). Textural properties of nanocrystalline tin oxide obtained by spray pyrolysis. Journal of Materials Chemistry, 13(9), 2290-2296.
Rad, A. G., Abbasi, H., & Afzali, M. H. (2011). Gold nanoparticles: synthesising, characterizing and reviewing novel application in recent years. Physics Procedia, 22, 203-208.
Sharma, A., Ahmed, A., Singh, A., Oruganti, S. K., Khosla, A., & Arya, S. (2021). Recent advances in tin oxide nanomaterials as electrochemical/chemiresistive sensors. Journal of the Electrochemical Society, 168(2), 027505.
Snaith, H. J., & Ducati, C. (2010). SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano letters, 10(4), 1259-1265.
Sudhaparimala, S., Gnanamani, A., & Mandal, A. B. (2012). Egg Shell Powder as the Precursor for the Synthesis of Nano Crystalline Calcium Stannate (CaSnO3) with orthorhombic Perovskite Structure: Exploration on Phase, Morphology and Antioxidant Property. Chem. Sci. Rev. Lett, 2(5), 267-277.
Sudhaparimala, S., Gnanamani, A., & Mandal, A. B. (2014). Green synthesis of tin based nano medicine: assessment of microstructure and surface property. Am. J. Nanosci. Nanotechnol, 2(4), 75.
Tazikeh, S., Akbari, A., Talebi, A., & Talebi, E. (2014). Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Materials Science-Poland, 32(1), 98-101.
Tomer, V. K., & Duhan, S. (2016). Ordered mesoporous Ag-doped TiO 2/SnO 2 nanocomposite based highly sensitive and selective VOC sensors. Journal of Materials Chemistry A, 4(3), 1033-1043.
Trigilio, J., Antoine, T. E., Paulowicz, I., Mishra, Y. K., Adelung, R., & Shukla, D. (2012). Tin oxide nanowires suppress herpes simplex virus-1 entry and cell-to-cell membrane fusion. PLoS One, 7(10), e48147.
Van Toan, N., Chien, N. V., Van Duy, N., Hong, H. S., Nguyen, H., Hoa, N. D., & Van Hieu, N. (2016). Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands. Journal of hazardous materials, 301, 433-442.
Vinayan, B. P., & Ramaprabhu, S. (2013). Facile synthesis of SnO 2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications. Journal of Materials Chemistry A, 1(12), 3865-3871.
Wang, Y., & Chen, T. (2009). Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochimica Acta, 54(13), 3510-3515.
Wang, Y., Jiang, X., & Xia, Y. (2003). A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. Journal of the American Chemical Society, 125(52), 16176-16177.
Wei, Y., Gao, C., Meng, F. L., Li, H. H., Wang, L., Liu, J. H., & Huang, X. J. (2012). SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): an interesting favorable mutual interference. The journal of physical chemistry C, 116(1), 1034-1041.
Yilmaz, R. M., Topu, F. B., & Takkaç Tulgar, A. (2022). An examination of the studies on foreign language teaching in pre-school education: A bibliometric mapping analysis. Computer Assisted Language Learning, 35(3), 270-293.
Yin, X. T., Zhou, W. D., Li, J., Wang, Q., Wu, F. Y., Dastan, D., ... & Ţălu, Ş. (2019). A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. Journal of alloys and compounds, 805, 229-236.
Zang, Y., Li, L., Li, X., Lin, R., & Li, G. (2014). Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chemical Engineering Journal, 246, 277-286.
Zhao, Q., Ma, L., Zhang, Q., Wang, C., & Xu, X. (2015). SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors. journal of Nanomaterials, 2015.
DOI: https://doi.org/10.33143/jics.Vol8.Iss2.2385
Refbacks
- There are currently no refbacks.
This journal indexed by