PERBANDINGAN PEMODELAN PID DAN FUZZY LOGIC CONTROLLER PADA PENJEJAK CAHAYA DENGAN TIGA SENSOR

Doni Gunawan, Yuwaldi Away, Ira Devi Sara

Abstract


Abstrak— Teknologi penjejak cahaya memantau agar panel surya dapat melacak matahari dengan efisiensi penuh dan panel surya dapat tegak lurus dengan cahaya matahari untuk memaksimalkan penyerapan energi surya, sehingga sistem ini mempunyai efisiensi lebih tinggi dari sistem nontracking. Penelitian ini bertujuan untuk mendapatkan kontroler yang bekerja dengan akurat antara Algoritma Proportional, Integral, Derivatif controller (PID) dan  algoritma Fuzzy Logic Controller (FLC) dengan cara membandingkan kinerja kedua algoritma dalam mengatur arah penjejak cahaya mendeteksi keberadaan cahaya matahari. Prototipe matahari penelitian ini menggunakan 9 buah lampu sebagai simulasi untuk mengetahui keakuratan dan kepresisian sudut dari kedua penjejak cahaya. Parameter yang dibandingkan dalam pengujian ini adalah aspek kecepatan sudut dan ketepatan sudut. Nilai rata-rata kecepatan sudut yang diperoleh dari hasil pengujian penjejak cahaya PID sebesar 0,16 rad/s sedangkan pada penjejak cahaya FLC sebesar 0,207 rad/s. Pengujian menggunakan penjejak cahaya PID menghasilkan nilai akurasi sumbu X sebesar 45% dan akurasi sumbu Y sebesar 30% sedangkan pada penjejak cahaya FLC menghasilkan nilai akurasi sumbu X sebesar 80% dan akurasi sumbu Y sebesar 30%. Nilai presisi yang diperoleh penjejak cahaya PID pada sumbu X sebesar 45% dan sumbu Y sebesar 38%, sedangkan nilai presisi yang diperoleh penjejak cahaya FLC pada sumbu X sebesar 71% dan sumbu Y sebesar 33%. Berdasarkan perhitungan keseluruhan yang telah dilakukan, maka dapat disimpulkan bahwa penjejak cahaya FLC memiliki peningkatan nilai kecepatan sebesar 29% dan peningkatan nilai ketepatan pada aspek akurasi sebesar 35% serta aspek presisi sebesar 26% dari penjejak cahaya PID pada penelitian terdahulu.

Kata Kunci : Penjejak Cahaya, PID, FLC

AbstractThis The technology of light tracking monitors the solar panels to track the sun with full efficiency and the solar panels can be upright to the sunlight in order to maximize the absorption of solar energy, so this system has a higher efficiency than non-tracking systems. This study aimed to obtain a controller that works accurately between the Proportional, Integral, Derivative Controller (PID) and the Fuzzy Logic Controller (FLC) Algorithm by comparing the performance of the two algorithms in regulating the direction of the light tracker to detect the presence of sunlight. This solar prototype uses 9 lamps as a simulation to determine the accuracy and the precision of the angles of the two light trackers. The parameters compared in this test were the Aspects of Angular Velocity and Angle Accuracy. The mean value of angular velocity obtained from the PID light tracking test results was 0.16 rad/s and the average linear velocity was 0.092 m/s. Whereas in the FLC light tracker, the average angular velocity value was 0.207 rad/s. Tests using a PID light tracker resulted in X-axis accuracy of 45% and Y-axis accuracy of 30%. Whereas the FLC light tracker produced X-axis accuracy of 80% and Y-axis accuracy of 30%. The precision value obtained by the PID light tracker on the X axis was 45% and the Y axis was 38%, while the precision value obtained by the FLC light tracker on the X axis was 71% and the Y axis was 33%. Based on the overall calculations, it can be concluded that the FLC light tracker has an increase in the speed value of 29% and an increase in the value of accuracy in the accuracy aspect by 35% and the precision aspect by 26% from the PID light tracker in previous studies.

Keywords : Light Tracking, PID, FLC


Full Text:

PDF

References


Saddam Azmi, “Kajian Aspek Kecepatan dan Ketepatan pada Sun Tracker Dua Sumbu Berbasis Sensor Berbentuk Tetrahedron,” Universitas Syiah Kuala, 2018.

Y. Away, Suriadi, A. Rahman, T. R. A. Isma, and Muhammad Firdaus, “Penerapan Logika Fuzzy pada Sun Tracker Dual Axis Berbasis Sensor Tetrahedron Geometri,” in Seminar Nasional dan Expo Teknik Elektro, 2017, pp. 74–80.

Y. Away, A. Rahman, T. R. A. Isma, and Muhammad Firdaus, “Performance Comparison Between PID and Fuzzy Algorithm for Sun Tracker Based on Tetrahedron Geometry Sensor,” in International conference on Electrical Engineering and informatics, 2018, pp. 40–44.

E. Kiyak and G. Gol, “A Comparison of Fuzzy Logic and PID Controller for A Single-Axis Solar Tracking Sistem,” Renewables Wind. Water Sol. a Springer Open J., vol. 3, no. 7, pp. 1–14, 2016.

C. Hilman and A. Musyafa´, “Rancang Bangun Dual-Axis PV Solar Tracker System Menggunakan Interval Type-2 Fuzzy Logic Controller,” in Seminar Nasional Pasca Sarjana FTI-ITS Surabaya, 2014, pp. 1–7.

B. M. Hamed and M. S. El-Moghany, “Fuzzy controller design using FPGA for photovoltaic maximum power point tracking,” Int. J. Adv. Res. Artifcial Intell., vol. 1, no. 3, pp. 14–21, 2012.

Abdul Adhim, “Perancangan Sistem Kontrol Dual-Axis Pv Solar System Menggunakan Particle Swarm Optimization,” S2 Teknik Fisika. FTI-ITS. Surabaya, 2014.

I. Abadi, “Design and Implementation of Active Two Axes Solar Tracking System Using Particle Swarm Optimization Based Fuzzy Logic Controller,” Int. Rev. Model. Simulations, vol. 8, no. 6, pp. 265–272, 2015.

D. Bawa and C. Y. Patil, “Fuzzy control based solar tracker using Arduino Uno,” Int. J. Eng. Innov. Technol., vol. 2, no. 12, pp. 179–187, 2013.

M. S, S. B, and K. R. P, “A new MPPT Design Using Grey Wolf Optimization Technique For PhotoVoltaic System Under partial Shading Conditions,” IEEE Trans. Suistable Energy, vol. 7, pp. 181–188, 2016.

S. Degeratu, S. Rizescu, L. Alboteanu, C. Caramida, P. Rotaru, and I. Boncea, “Using a Shape Alloy Memory Spring Actuator to Increase the Performance of Solar Tracking System,” Ann. Univ. Craiova, no. 38, pp. 116–121, 2014.

R. Maulana, M. H. H. Ichsan, and Gembong Edhi Setyawan, “Implementasi Pengkondisian Kipas dan Lampu Otomatis Menggunakan Logika Fuzzy,” J. PTIIK, vol. 2, no. 11, pp. 5301–5309, 2018.

A. U. Azmi, Sumardi, and M. A. Riyadi, “Sistem Tracking Panel Surya Untuk Pengoptimalan Daya Menggunakan Metode Kontrol Self-Tuning PID Dengan JST Jenis Perceptron,” J. Transm., vol. 17, no. 1, pp. 35–41, 2015.

B. E. Cahyono, I. D. Utami, and N. P. Lestari, “Karakteristik Sensor LDR dan Aplikasinya pada Alat ukur Tingkat kekeruhan Air Berbasis Arduino UNO,” J. Teor. dan Apl. Fis., vol. 7, no. 2, pp. 179–185, 2019.

I. Stamatescu, I. Fagarasan, G. Stamatescu, N. Arghira, and S. S. Iliescu, “Design and implementation of a solar tracking algorithm,” in Proceedings of the 24th DAAAM international symposium on intelligent manufacturing and automation, 2014, pp. 500–507.

Sumathi, V., Kanagaraj, J., Reddy, S.S.C., Kankipati, S.S., Vidavaluru, A. and Subramaniam, U., "Dual-Axis Solar Tracking and Monitoring of Solar Panel Using Internet of Things." Cyber-Physical Systems and Industry 4.0: Practical Applications and Security Management, pp. 137-148, 2022.

Wu, C.H., Wang, H.C. and Chang, H.Y., "Dual-axis solar tracker with satellite compass and inclinometer for automatic positioning and tracking." Energy for Sustainable Development 66. pp 308-318, 2022.

Alvarez-Herrera, C. "Construction of dual-axis sun tracker controlled by Arduino." Journal of Physics: Conference Series. vol. 1723. no. 1, 2021.




DOI: https://doi.org/10.33143/jics.Vol9.Iss1.2855

Refbacks

  • There are currently no refbacks.


This journal indexed by

Google Schoolari-Journalsi-FocusPortal Garuda